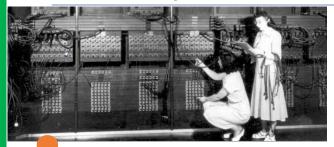


The Smartphones of Water Disinfection – How Micro UV-C LED Systems Can Increase Accessibility to Public Health Protection


Jennifer Pagan, Oliver Lawal September 2017 IUVA World Congress

We Can Learn From The Past

- How have other technologies increased accessibility?
- Will UV follow the same trajectory as other technologies?
- How can micro UV systems increase access to health protections?

Computer Evolution

1941 Z3-Konrad Zuse, German 1944 Colossus Mark 1, British 1946 ENIAC, US Army

1965 DEC PDP-8

1982 Commodore 64 1984 Apple Macintosh

2007, Amazon Kindle, Apple iPhone 2008, MacBook Air-solid state drive

1940

1950

1960

1970

1980

1990

2000

2010

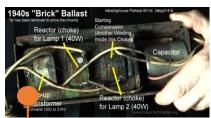
2020

1951-Univac

1975 MITS Altair 8800 1977-1993 Apple II

1991-96 Apple Powerbook, IBM Thinkpad 701, Sony Vaio

2010-Apple iPad 2013 Google Glass 2015 Apple Watch



UVGI Evolution

1910, UV water treatment

Marseilles, France

Lamp Technology Improvements

1960-Beukers and Berends thymine dimers with UV-C

1980's-Rise of residential

2005 UV for cooling coil

Micro-UV systems

1900 -----

1940

1950

1960

1970

1980

Municipal Growth

1990

2000

2010

2020

1924-Hanovia founded 1936 use of UVGI at Duke University

> 1955, LP UV water treatment plants in Austria, Switzerland

US EPA funds several full scale wastewater systems

2012-Steripen Philips Sonicare

LED Technology like the Transistor

Vacuum Tubes Hg Lamps

- Glass Envelope
- Large footprint
- Physical Electrodes
- Fixturing required

Transistors LEDs

- Solid State
- Small Footprint
- Direct Charge Injection
- Board mountable

Small is problematic for Hg

IUVA World (

Smallest Hg lamp is double the size of a LED lamp which includes drive and monitoring circuitry

- Lifetimes are poor
- Lower reliability

Brand	Ushio	Philips	Philips2	Ushio3	AquiSense
MPN (Part No.)	3000022	PL- S5W/TUV	325126	3000304	PAQC-1
Bulb Shape	T7	Twin-Tube	Twin-Tube	Twin-Tube	PCB
Life Hours (Hours)	3,000	8,000	8,000	8,000	10,000
Wattage (Watts)	3 Watt	5.5 Watt	9 Watt	9 Watt	8 Watt
Voltage	10.5	34	60	59	12
Current (Amps)	0.3	0.18	0.17	0.18	0.35
Base Type	E17	G23	G23	G23	PCB
Ultraviolet Output (Watts)	0.16	1.1	2.3	2.4	0.18
Wavelength	253.7 nm	253.7 nm	253.7 nm	253.7 nm	275-285 nm
Length (mm)	63	85	145	145	20 X30
Diameter (Inches)	20	25,4	28	28	2.6 (height)
WPE	5%	20%	26%	27%	2%

This is a sample of the presentation material.

To request a full copy, please contact:

Mitch Hansen

Mitchel. Hansen@aquisense.com

